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Abstract 

We investigate the relationship between two different notions of linking, one homological and 
one holomorphic, in a twistorial context. The two notions tnrn out to be surprisingly closely related. 
0 1998 Elsevier Science B.V. 

Subj. Class.: Spinors and twistors 
1991 MSC: 83A05; 81R25 
Keywords: Twisters; Causal relations; Linking; Cohomology 

1. Homological linking and causality 

Causal relations are extremely easy to describe in Minkoswki space. If we make a choice 
of a Minkowskian coordinate system q’, u = 0, . . . ,3, so that the metric is 

3 

ds2 = (dq”)2 - c(dq’)’ 
i=l 

then two points x and y with coordinates q: and qz are causally separated if and only if 

3 

i=l 

and x is to the future (past) of y if 4x0 > qj (4x0 < q:). The space-time point x is said to be 
chronoZogicaZZy separated from y if the former inequality is strict. If x is chronologically 

* Corresponding author. E-mail: trfield@dera.gov.uk 
’ E-mail: r.low@coventry.ac.uk. 

0393-0440/98/$19.00 0 1998 Elsevier Science B.V. All rights reserved 
PII SO393-0440(98)00021-7 



340 TR. Field, R.J. Low/Journal of Geometry and Physics 28 (1998) 339-348 

separated from y, we write x E Z(y); if x is to the future (past) of y, then x E Z+(y) 
(x E Z-(y)). We can also understand this relationship in a much more geometric way, 
though. 

For choose a Cauchy surface S containing x. Then the set of all light rays passing through 
y will intersect S in a two-sphere XS. We now find that x and y are causally separated if 
x lies inside or on ys, and chronologically separated if x lies inside it. Furthermore, we 
can associate an orientation to the sphere: for the future pointing tangents to the light rays 
through y will point into ys if y is to the future of x, and outward if y lies to the past. 

Using this, we can give an explicit definition of the winding number of ys around x in 
S. For the fundamental class of ys is mapped into either 1 or -1 in H2(S \ {x}); we define 
the winding number of ys round x to be this value. By an appropriate choice of orientation 
on S, we can ensure that y is to the chronological future of x if ys has a winding number 
of 1 round x, and to the chronological past if the winding number is - 1. 

There is yet another picture of this relationship, which we can obtain by considering 
PN’, the space of all null geodesics in Minkowski space. We can represent x and y in 
PN’ by X and Y, the set of all null geodesics passing through x and y, respectively. Then 
PN’ 2 R3 x S2, and PN’ \ X G R x S2 x S2, so that H#N’) = Z, and H2(PN’ \ X) = 
Z @ Z. To find a homological definition of the linking number of X and Y in PN’, we need 
(intuitively) to find the image of the fundamental class of Y in H2(PN’ \ X)/H2(lP’N’) (cf. 
the definition of linking number in [ll]). In general, H,(W+’ x S”) is a quotient group, 
rather than a subgroup of H,, (W x S” x P). However, it is possible to identify H2(lR3 x S2) 
with a subgroup of H2(R x S2 x S2): one way of doing this is to embed PN’ in R5, and 
then observe that the linking number of the images of X and Y is independent of the choice 
of embedding, as set out in [8]. This enables one to identify H2(PN’) as a subgroup of 
H2(PN’ \ X), and so define the linking number of Y round X, denoted L(X, Y), as the 
image of the fundamental class of Y in the quotient group. 

The integer so-obtained is equal to the winding number of ys about x in S. Thus, we can 
define a linking number for two spheres each corresponding to the set of all null geodesics 
through a point of Minkowski space represented in PN’, and this linking number exactly 
captures the chronology relationship. In fact, by an appropriate choice of orientations, we 
have L(X, Y) = 1 if and only if y E Z+(x), and L(X, Y) = -1 if and only if y E Z-(X). 

2. Holomorphic linking 

The above notion of linking is as close as we can get to that of two S’ ‘s in R3, where if Cl 
and C2 are two oriented S’ ‘s, we can obtain the linking number L(Cl , C2) of Cl round C2 
by finding the image of the fundamental class of Ct in R3 \ C2. Unfortunately, the analogy 
is weaker than one might prefer, essentially because the second homology group of PN’ is 
non-trivial even before L p is removed. 

However, there are other ways of finding L(Ct , C2). One can draw a projection of the 
link to R2, and count crossings with the appropriate sign [6]. This admits of no obvious 
analogue. 
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More intriguingly, one can use the following integral, as described in [4], where x and y 
range over Cl and C2, respectively: 

L(Cl, C2) = & 
(x-y). dxr\ dy 

Ix-Y13 * 

As pointed out in [9] one can write this integral projectively and since the integrand is 
analytic, allow the variables to become complex. This yields the following expression for 
L: 

II I I 

X Y dX/ulY (1) 

where the integral is carried out over a one real dimensional contour in each of the one 
complex dimensional complex curves X and Y, and G is some symmetric holomorphic 
metric on IV. The diagrammatic notation of Penrose [lo] is used here for clarity. This may be 
summarized by the property that for any manifold M a tensor field Z’al,...3ar bl ,...,bS on M of 
type (r, s), i.e. with r contravariant and s covariant indices, is represented diagrammatically 
in the form 

r lines . . . 
Q T . . . 
s lines 

and that lines joining index pairs denote contraction according to the Einstein summation 
convention. A horizontal bar is taken to represent the alternating symbol, or totally skew 
tensor, on M”, more usually written as ??a, ,..., a,. 

Eq. (1) gives us a quantity defined for two holomorphic complex curves in PT that 
bears a strong formal resemblance to a linking number. (Observe however that it is skew- 
symmetric in X and Y, while the corresponding integral for real curves in !R3 is symmetric.) 
The holomorphic link integral is invariant under small holomorphic changes of the contours 
and small holomorpbic variations in G provided that the integrand remains non-singular [9]. 
We shall call this quantity the holomarphic linking number of X and Y and denote it by 
LN(X, Y). 

The question we pose is what relation may exist between Lx and the homological linking 
number described in Section 1. The surprising result is that the holomorphic linking number 
is actually closely related to the,homological linking number defined for spheres within PN’ . 
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3. Holomorphic linking and the quantum Kilhlerian structure 

The actual evaluation of the holomorphic linking number involves some fairly subtle 
problems. However, following a suggestion of Hodges, reported in [9], on how to represent 
the holomorphic linking number in terms of twistor diagrams, one can find a cohomological 
interpretation of the quantity, and so re-express the integral in terms of certain fields on 
space-time. 

For let C#J and $ be fields on (complexified) Minkowski space. Such fields may be split up 
into positive and negative frequency parts [l] so that we may regard 4 as the pair ($+, 4-). 
There is a triple of natural structures available, a quantum Kiihlerian structure, namely a 
positive definite metric g, a symplectic structure 52, and a complex structure J, satisfying 
the compatibility relationship 

&?(@a llr) = a(@, J@). (2) 

If we take g to be the Hilbert space inner product on our fields, and J to be defined by 

Jf$ = i(++ - c#-), 

then we may regard L? as defined by the above consistency relation [2,7]. Explicitly the 
symplectic structure is represented on space-time as 

for an arbitrary spacelike cross section of Minkowski space. The integral is independent 
of the choice of .K whenever c$, + satisfy the wave equation. The action of the complex 
structure J on a space-time field or potential q (with any index structure) satisfying V2p = 0 
throughout Minkowski space, whose positive and negative frequency parts satisfy certain 
decay requirements (see [2] for details), is given by the three-surface integral 

J[vl(x) = -+$ s K2(; x,> 6” - ?“)po(x’) d3Z;, 

C(x) ’ 

where K2 = (xa - x’~)~ Ea is future pointing, and Z(x) is a once differentiable real , 
spacelike hypersurface constrained to contain the point of evaluation x. Recasting these 
results in twistor form it can be shown that if 4 and $ are defined by the holomorphic 
curves X and y in PT respectively, then there exists a relation between the holomorphic 
linking number of these curves and the metric and symplectic products of the associated 
fields. We have the following result. 

Proposition. If q5 and + are dejned by the holomorphic curves X and Y in UT, respectively, 
then the relation 

holds, whenever one of X or y lies in PT+ and the other lies in PT-. 
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Proo$ We outline the proof of this result in two main steps. Firstly, as pointed out in [9], 
one can rewrite the holomorphic link integral in twistor form. We have the following result. 

Lemma. For an appropriate choice of contour 

f 3/Z 
> 

oc 
f 

Dw 

(4) 

in which the square symbol containing H represents some metric distinctfrom G in general 
position. 

Proof of the lemma. This result first appears in [9], although no specification there of the 
required contour is given. What is needed is the Pochammer contour [ 121 which we shall 
denote P, and the details of how to apply this to (4) appear in Section 8.3 of [2]. In brief 
the construction is as follows. A useful preliminary observation, due to Hodges, is that 

log[G(W, WIHW, WIDw 
(W . x>qw . Y)* 

= G(ax’ “) 
log[GW, W)IH(W> W)l,,. 
(W. X)(W . Y)G(W, W) (5) 

A priori the integral on the right-hand side above depends on both metrics G and H, and 
it is in the specification of the contour of integration that the dependence on H disappears. 
The topology of the required contour is S’ x S’ x P. The two St components encircle the 
simple poles situated where W . X and W s Y vanish. The effect of the S’ x S’ integration 
(cf. [SO]) is to restrict the twistor integral to a pure spinor integral, in which the spinor 
variable serves as a coordinate on the line joining X and Y in PU. Explicitly the twistor 
integral reduces to 

log[(GABrlArB>/(HAsrA~E)l 
GABV~~~~ 

AW (6) 

with 

w, = (aA, DA’), AW = ?lA dn*, 

where GAB = G(AB) and HAB = H(AB) are the primary spinor parts [lo] of the twistor 
metrics G,p and H,p respectively. We can rescale the twistor W, so that 

GAB~~Q~ = (Z - a)(z - c), HABV~Q~ = (Z -b)(z -4, qA = (z, 1) 
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and then (6) becomes 

I 1 

(Z - a)(z - c) log [ 

(Z - a)(z - c) 

(z - b)(z - d) I 

dz 
(7) 

in the complex plane of the variable z. To yield independence of (4) on H,B we seek a 
contour for (7) above such that the result is independent of b and d. A detailed investigation 
reveals that a Pochammer contour is required, as we illustrate below. 

0 0 
6 d 

The Pochammer contour. 
The more usual application of this Pochammer contour encountered in the literature is 
for an integrand containing an expression of the form (a - z)~(c - z)p where h, /_L are 
complex powers (as occurs in the integral representation of the betafunction, cf. [12]). The 
Pochammer contour can be seen to consist of two figures of eight 

>___, ,;--f----. \\ l:,@ 1 a* ’ .,’ ??c \ 

I’ 
1 ‘\ 

, 
I 

,’ ‘\ 
de’ _- “.__)_/ 

In the case of the integrand (a - z)* (c - z)k”, traversal of a single constituent figure of eight 
takes one onto a different sheet of its Riemann surface, and only traversal of both figures 
yields a closed contour. The situation as regards (7) is different however, in that traversal 
of a single figure of eight yields a closed contour, and the two figures by themselves are 
period contours for (7). Integration over each period separately yields a result that depends 
on b and d, and thus on the twistor metric H,b. When both periods are traversed however, 
and thus the integration is over P, the dependence on H is eliminated. The result of this 
integration is non-zero since the two periods cannot be deformed into one another on the 
Riemann surface of the integrand (7). Calculation yields the result of the integration to be 

1 1 
- = (GABGAB)‘/ c-a 

and the right-hand side above can be written in twistor terms diagrammatically as 
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P&n l/2 
G XY 
G 

The action of G(ax, ar) on this produces the required result. 

Using the above lemma we see that the link number is given by 

WdW dW dW 

A A 
- (f-9 I X Y dX,,dY 

As pointed out in [9] the corresponding twistor diagram expression for L is 

(9) 

Here Hi Y are elements of the cohomology group H’(PU, 0(-2)) based on the holomor- 
phic curves X and Y, respectively. That is, 

X t--, Hi\(X) E p[iqi] =: (p 0 q)ij 

(H ’ (X) is said to be the dotproduct of p with q) for holomorphic functions p, q E Ho (PU) 

whose common singularity region defines the holomorphic curve X. A similar construction 
holds for Y. It has been shown (Eq. 7.2.60 in [2]) that the twistor representation of the 
complex structure J corresponding to a mixed frequency twistor function g4 (W) for a 
spacetime field 4, is given by a derived twistor function gJl@l (W’) with diagram 

(10) 

It will be understood in this expression and in the following, that the twistor functions are 
defined as elements of first cohomology on a complex thickening of PN. This provides 
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the natural description of mixed frequency fields in tech cohomological terms. For a more 
detailed account of these matters see [2,5]. We have the result (cf. Lemma 7.2 in [2]) that the 
symplectic product between a pair of mixed frequency fields is given by a twistor integral 
with diagram 

Thus the corresponding metric product g(4, $), which by (2) is given by 

may be expanded using (10) to give 

@+$?$C&&J 

S1 

Deformation of the quadric boundary H(W, W) = 0 in the numerator of (9) to become a 
pair of planes completes the proof of the proposition. 0 

Remarks. The result tells us that two complex lines in PU each of which lies in either PU+ 
or PT- must have a holomorphic linking number off 1 if exactly one lies in each region. The 
cohomological properties of the twistor diagrams also ensure that the holomorphic linking 
number is not defined if either of X or Y meets PN, and is zero if both lie in PU+ or PU- [2]. 

Now we can choose X and Y to be complex lines in PU+, PU- respectively, and, in par- 
ticular, such that X corresponds to a point -ix’, with xa a point in the chronological future 
of 0 in real Minkowski space; and similarly such that Y corresponds to a point -iya with 
ya a point in the chronological past of 0 in real Minkowski space. Furthermore, the motion 
xa -+ -ix’ in complex Minkowski space induces the mapping (oA, nA’) + (-imA, nA’) 
in PT. If we denote this action by j, then X = j(X), y = j(Y), and we have 

UX, Y) = &(j(X), j(Y)). 

4. Issues of conformal and holomorphic invariance 

At first sight, a holomorphic linking expression for causal relations in Minkowski space 
seems implausible from the point of view of conformal invariance. We must understand 
how an integral within PU, which is holomorphically invariant, can give a result that is not 
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conformally invariant in complexified compactified Minkowski space. Indeed, since S2’s 
do not link in six dimensions, it might seem that the holomorphic linking number could not 
calculate anything related to homological linking in PN’ , 

In fact, there was an undeclared subtlety in Section 3. Although one can use the holomor- 
phic linking number in PT to calculate the linking number in PN’ , the above procedure only 
gives the correct answer for chronologically separated points if one is in the chronological 
future of the origin in Minkowski space while the other is in the chronological past. For if 
x and y are timelike separated, but both lie to the future of the origin, then both X and Y 
will be carried into PT-, and L,(j (X), j(Y)) will be zero. 

To carry out the required procedure, we have to choose the origin of Minkowski space to 
be the point midway between x and y. Once the infinity twistor is chosen, i.e. the line I in 
PT [lo], we have complexified Minkowski space as an affine space: the midpoint of the line 
joining x and y is then well-defined. Choosing that as the origin of Minkowski space, we 
can then apply the above operation. Once this choice is made, Lx(j (X), j(Y)) calculates 
the linking number. 

Explicitly, any space-time point xa E @I# corresponds to a simple skew twistor X@, 
with the normalization that for points in finite Minkowski space the relation X”BZ,p = 2 
holds, where Z”B is the infinity twistor (this convention is in accordance with [lo]). Let 
us also fix OffB to be the simple skew twistor representing the line in twistor space that 
corresponds to some chosen origin in Minkowski space. Then the following relations hold: 

X@O,B = -(x&P), X@Y@ = -(x0 - y”)(xa - ya). 

For two points xa , ya in afJine Minkowski space represented by simple skew twistors X@ 
and Yab, respectively, the point ii(x - y)” has twistor representation 

ii(x - y)” t, ii(XaB - Y”b) + f(X, Y)@ + oab, 

f(X, Y) := d(i[Y@ - X@]O,fi - iX”BY,b). 

Thus clearly the operation 

in affine M breaks conformal invariance, via the requirement that the infinity twistor I@ 
be specified in its twistor description. 

In the above description, we have seen how to relate a twistor diagram based on two 
twistor lines in WV’ by rotating these lines so that if they are causally separated one lies in 
PU+ and one lies in PU-; the diagram is evaluated in terms of cohomology based on PN. 

It is also possible to take a slightly different perspective on this. Consider again the 
rotation j : PU + PU, but now, instead of using it to move X and Y, consider j (WV), 
the image of PN under this map. If we now reinterpret the twistor diagram (9) as defining 
cohomology based on a thickening of this surface, rather than on a thickening of PN, then 
we immediately obtain a holomorphic linking number that agrees with the homological one 
when X and Y both lie in WV’. This corresponds to choosing a new metric G on PU; recall 
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that the value of the holomorphic linking number was invariant only under sufficiently small 
changes in G. 

Furthermore, we can now regard the holomorphic linking number as a genuine gener- 
alization of the homological one. If X and Y are linked in PN’ in the homological sense, 
then we regard X as a fibre of PN’ regarded as an S2 bundle over S, and Y can only be 
deformed (within PN’) into another fibre of this bundle if at some stage in the deformation 
Y intersects X, and at this stage the homological linking number is undefined. Although it is 
possible to deform Y into another fibre of the bundle by moving it out of PN’, at some stage 
of this process Y must pass through j(lPN), and this will cause the holomorphic linking 
number to be undefined. 

We note finally that it follows that we can use the holomorphic linking number to give 
a formal generalization of causal structure to complex Minkowski space. However, an 
interpretation of this in terms of domains of dependence for fields determined by initial 
data remains to be investigated. 

Acknowledgements 

The authors are grateful to the Erwin Schrodinger International Institute for Mathematical 
Physics in Vienna, for their hospitality in April 1997 during which time this work was 
developed, and to Andrew Hodges, Roger Penrose and Helmuth Urbantke for numerous 
enlightening discussions. 

References 

[l] T.N. Bailey, L. Ehrenpreis, R.O. Wells, Jr., Weak solutions of the massless field equations, Proc. Roy. 
Sot. London A 384 (1982) 403425. 

[2] T.R. Field, The complex quantum structure, D. Phil. thesis, Oxford University, 1997. 
[3] T.R. Field, Geometrical aspects of the Kller structure for the quantum state space of zero rest-mass 

fields, ESI, Erwin Schrodinger International Institute for Mathematical Physics, Preprint No. 535,1998; 
J. Math. Phys. (1998), submitted. 

[4] H. Flanders, Differential Forms with Applications to the Physical Sciences, Academic Press, New York 
1963. 

[5] M.L. Ginsberg, Scattering theory and the geometry of multi-twistor spaces, Trans. Amer. Math. Sot. 
276 (2) (1983) 789-815. 

[6] L. Kaufmamr, On Knots, Princeton University Press, Princeton, NJ, 1987. 
[7] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, vol. 2, Wiley Classics Library, 1996. 
[8] R. Low, Twistor linking and causal relations Class Quantum Grav 7 (1990) 177-187. 
[9] R. Penrose, Topological QFI and Twistors: Holomorphic linking, Twistor Newsletter, Mathematical 

Institute, Oxford University, 27, 1988, pp. l-3 
[lo] R. Penrose, M.A.H. MacCallum, Twistor theory: an approach to the quantization of fields and space- 

time, Phys. Rep. 6C (1972) 241-315 
[l l] E.H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1962. 
[12] E.T. Whittaker, G.N. Watson, A Course of Modem Analysis, 2nd ed., Cambridge University Press, 

Cambridge, 1915. 


